Resit - Group Theory (WIGT-07)

11-04-2019, 9:00h-12.00h
University of Groningen

Instructions

1. Write your name and student number on every page you hand in.
2. All answers need to be accompanied with an explanation or a calculation.
3. Your grade for this exam is $(P+10) / 10$, where P is the number of points for this exam.

Problem 1 (15 points)

a) Give the definition of the kernel of a group homomorphism.

Solution: Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Then the kernel of φ is the set of all elements of G mapped by φ to the unit element of G^{\prime}. (5 points)
b) Write down the homomorphism theorem.

Solution: If $\psi: G \rightarrow G^{\prime}$ is a homomorphism of groups, then $H:=\operatorname{ker}(\psi)$ is a normal subgroup of G and we have

$$
G / H \cong \psi(G) \leq G^{\prime} .
$$

(5 points)
c) Give the definition of the orthogonal group $O(n)$, where $n \geq 1$ is an integer.

Solution: $\mathrm{O}(n)=\left\{A \in \mathrm{GL}_{n}(\mathbb{R}) \mid A^{T} A=I\right\}$. (5 points)

Problem 2 (8 points)

Let $\tau=(1432)(5678)(6815)(457) \in S_{8}$.
a) Compute the order of τ. We compute the decomposition of τ into disjoint cycles and find $\tau=(16584732)$ (3 points). Hence ord $(\tau)=8$ (1 point), because the order of cycle is the length of the cycle. (1 point) (5 points in total)
b) Compute the sign of τ.

Solution: Using a), the sign is $(-1)^{8-1}=-1$ (3 points)

Problem 3 (16 points)

Let H be the subset of A_{4} consisting of the identity and all products of disjoint 2-cycles.
(a) Show that H forms a subgroup of A_{4}.

Solution: We use the subgroup criterion. Obviously the product of (1) with any element of H is in H. Let $i, j, k, \ell \in\{1,2,3,4\}$ be distinct. Then we have

$$
(i j)(k \ell)(i k)(j \ell)=(i \ell)(j k)
$$

This shows that the product of two nontrivial elements of H is again in H. The inverse of a 2-cycle is itself, so this also holds for the product of disjoint 2-cycles, since these commute. In particular, they are in H. Because (1) $\in H$, this shows that $H \leq A_{4}$ by the subgroup criterion. (5 points)
(b) Show that $H \leq A_{4}$ is normal.

Solution: We need to show that $\tau \sigma \tau^{-1} \in H$ for any $\sigma \in H$ and arbitrary $\tau \in A_{4}$. This is trivial for $\sigma=(1)$, so let $\sigma:=(i j)(k \ell) \in H$ with i, j, k, ℓ distinct.
We know that

$$
\tau \sigma \tau^{-1}=\tau(i j) \tau^{-1} \tau(j \ell) \tau^{-1}=(\tau(i) \tau(j))(\tau(k) \tau(\ell))
$$

Now τ is a bijection, so $\tau(i), \tau(j), \tau(k), \tau(\ell)$ are distinct, and hence $\tau \sigma \tau^{-1} \in H$. (6 points)
(c) Show that A_{4} / H is an abelian group.

Solution: Since $H \leq A_{4}$ is normal, there is a group structure on A_{4} / H. We have $H=$ $\{(1),(12)(34),(13)(24),(14)(23)\}$, so H has order 4 . Therefore A_{4} / H has order $\left|A_{4}\right| / 4=$ 3. But every group of order 3 is isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$ and hence abelian. (5 points)

Problem 4 (15 points)

Let G be a group of order $p^{2} q$, where p and q are distinct prime numbers. Show that G is not simple. (Hint: You will need a case distinction.)

Solution: For a prime $\ell \mid p^{2} q$, let $n_{p}=n_{p}(G)$ be the number of Sylow- p groups in G. If we find $n_{\ell}=1$ for some ℓ, then we know that the unique Sylow ℓ-group in G is normal and, since it has order ℓ, it is not G or $\{e\}$, so G is not simple. (2 points)

Suppose $p>q$. Then by Sylow's theorem $n_{p} \mid q$, so $n_{p} \in\{1, q\}$. (1 point) But $n_{p} \equiv 1$ $(\bmod p)$, (1 point) so $p \mid n_{p}-1$, which is impossible for $n_{p}=q$ since $p>q$. Hence $n_{p}=1$ and we are done. (3 points)

Now suppose $q<p$. Then $n_{q} \mid p^{2}$, so $n_{q} \in\left\{1, p, p^{2}\right\}$. (1 point) As above, we can't have $n_{q}=p$. (2 points) But if $n_{q}=p^{2}$, then there are p^{2} subgroups of G of order q. Since q is prime, the intersection of two distinct such groups contains precisely the unit element of G, and moreover there are $q-1$ elements of order q in such a group. (2 points) Therefore G contains $p^{2}(q-1)=|G|-p^{2}$ elements of order q. (1 point) By Sylow's theorem, there is at least one Sylow- p-group in G. Since such a group has order p^{2}, it follows that there is exactly one of them, and we're done. (2 points)

Problem 5 (18 points)

The center of a group G is the set

$$
Z(G):=\{x \in G: x y=y x \text { for all } y \in G\},
$$

i.e. the set of elements of G which commute with all elements of G. The center of G is a subgroup of G (you do not have to prove this).
(a) Show that if G is a group, then $Z(G) \leq G$ is normal.

Solution: To show that $Z(G)$ is normal, it suffices to show that for $x \in Z(G)$ and $y \in G$ we have $y x y^{-1} \in Z(G)$. But in fact this is equal to x, which proves normality. (3 points)
(b) Show that the set

$$
H:=\left\{\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right): a, b \in \mathbb{R}, a \neq 0\right\}
$$

forms a group under matrix multiplication.
Solution: The identity matrix is obviously in H. (1 point) Let $M=\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right), N=$ $\left(\begin{array}{cc}c & d \\ 0 & c^{-1}\end{array}\right) \in H$. Then

$$
M N=\left(\begin{array}{cc}
a c & a d+b c^{-1} \tag{1}\\
0 & (a c)^{-1}
\end{array}\right)
$$

so $M N \in H$. (2 points) A simple computation shows $M^{-1}=\left(\begin{array}{cc}a^{-1} & -b \\ 0 & a\end{array}\right) \in H$. (2 points) By the subgroup criterion, H is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$, hence a group under multiplication. (1 point) (6 points in total)
(c) Find the center of H.

Solution. Let $M=\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right) \in Z(H)$. According to (1), this means that for every $N=\left(\begin{array}{cc}c & d \\ 0 & c^{-1}\end{array}\right) \in H$, the relation

$$
a d+b c^{-1}=b c+a^{-1} d
$$

holds. (2 points) But if $b \neq 0$, this implies

$$
\frac{a-a^{-1}}{b}=\frac{c-c^{-1}}{d}
$$

which can't be correct for all N, since the left hand side is independent of the choice of N and the right hand side is not. (2 points)
Similarly, if $a \neq a^{-1}$, then we get

$$
\frac{b}{a-a^{-1}}=\frac{d}{c-c^{-1}},
$$

which can't be satisfied for all N for the same reason. (2 points)
Therefore we must have $b=0$ and $a=a^{-1}$, so $\pm M$ is the identity matrix. (2 points) And indeed both of these matrices are in the center of H, since they commute with every 2×2-matrix. (1 point)
(9 points in total)

Problem 6 (18 points)

a) Compute the rank and elementary divisors of $\mathbb{Z}^{2} \times \mathbb{Z} / 4 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{\times}$.

Solution: The rank of $\mathbb{Z}^{2} \times \mathbb{Z} / 4 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{\times}$is 2 , because $\mathbb{Z} / 4 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{\times}$is finite.
Note that $\left|(\mathbb{Z} / 4 \mathbb{Z})^{\times}\right|=2$, because in $\mathbb{Z} / 4 \mathbb{Z}$ we have

$$
\overline{1}^{2}=\overline{1}, \overline{2} \bar{a} \in\{\overline{0}, \overline{2}\}, \overline{3}^{2}=\overline{1}
$$

where the second congruence holds because an even integer is never congruent to 1 modulo 4. Hence $(\mathbb{Z} / 4 \mathbb{Z})^{\times} \cong \mathbb{Z} / 2 \mathbb{Z}$, as this holds for every group of order 2 . We find that $\mathbb{Z} / 4 \mathbb{Z} \times$ $(\mathbb{Z} / 4 \mathbb{Z})^{\times} \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, so the elementary divisors are 2 and 4 . (7 points in total)
b) Let $H \leq \mathbb{Z}^{3}$ be generated by $(1,0,-3),(4,5,1)$ and $(2,-1,0)$. Show that $\mathbb{Z}^{3} / H \cong \mathbb{Z} / 43 \mathbb{Z}$.

Solution: The easiest way to see this is to note that

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & -3 \\
4 & 5 & 1 \\
2 & -1 & 0
\end{array}\right)=43
$$

By a result from the lectures, we have $\left|\mathbb{Z}^{3} / H\right|=43$. But since 43 is prime, every group of this order is isomorphic to $\mathbb{Z} / 43 \mathbb{Z}$.

Alternatively, one can apply the algorithm from the lectures to find that the only elementary divisor of H is 43. (11 points in total).

End of test (90 points)

